Tuesday, May 21, 2013

Tugas Kimia Organik

1. Bagaimana cara mengidentifikasi adanya protein dalam makanan?
Jawab :
Analisa Kualitatif:
1. Uji biuret,
uji biuret ini dapat digunakan untuk mengetahui ada atau tidaknya ikatan peptida dalam
suatu senyawa sehingga uji biuret dapat dipakai untuk menunjukan adanya senyawa
protein. Langkah pengujian yang dapat dilakukan adalah larutan sampel yang didug
mengandung protein ditetesi dengan larutan NaOH kemudian diberi beberapa tetes
larutan CuSO4 encer. Apabila larutan berubah menjadi warna unggu maka larutan
tersebut mengandung protein.

2. Uji millon,
 Uji millon dapat digunakan untuk menguji atau mengidentifikasi adanya
senyawa protein yang memiliki gugus fenol seperti tiroksin. Pereaksi millon terdiri dari
larutan merkuro dan merkuri nitrat dalam asam nitrat.adanya protein dalam sempel dapat
diketauhi apabila dalam sampel terdapat endapan putih dan apabila endapan putih itu
dipanaskan akan menjadi warna merah.

3. Uji Hopkins Cole
Uji Hopskin Cole bertujuan untuk mengetahui apakah dalam suatu zat dan senyawa terdapat asam amino triptofan atau tidak. Pada percobaan ini terdapan warna ungu yang merupakan indikasi adanya gugus triptofan pada gelatin. Untuk mengetahui apakah terdapat asam amino ini, dengan penambahan formaldehida, aldehid akan berikatan dengan gugus indol asam amino triptofan membentuk cincin ungu. Percobaan ini sesuai dengan tinjauan pustaka Harper, 1980 yang menyatakan bahwa reaksi warna Hopskin Cole, bertujuan untuk mengetahui adanya gugus triptofan yang jika berhasil positif, maka akan menunjukkan indikasi warna ungu.

4. Uji Xanthoprotein
Pada dasarnya, uji Xanthoprotein bertujuan untuk mengetahui adanya gugus aromatic (benzene) yang berupa asam amino tirosin, triptofan dan fenilalanin. Pada uji ini terbentuk warna kuning yang merupakan indikator adanya asam amino-asam amino tersebut. Hal ini sesuai dengan dasar teori dan tinjauan pustaka Harper, 1980 yang menyatakan bahwa reaksi warna Xanthoprotein bertujuan untuk mengetahui adanya gugus aromatik asam amino yang memiliki gugus aromatik (benzene) yang ditunjukkan dengan adanya warna kuning.

5. Uji Molisch
Uji Molisch bertujuan untuk mengetahui adanya sakarida dan glikosida pada suatu senyawa protein. Hasil yang positif seharusnya berwarna ungu. Pada hasil percobaan, warna yang terjadi adalah hijau tua yang kemungkinan terjadi kontaminasi pipet atau gelatin yang digunakan terlalu sedikit sehingga tidak tercapai efek yang diinginkan. Kadar karbohidrat dalam gelatin sedikit. Karbohidrat dengan penambahan asam pekat mengalami dehidrasi menjadi furfural. Jika furfural ditambahkan Molisch (α -naphto) akan mengalami kondensasi yang membentuk cincin ungu. Hal ini sesuai dengan tinjauan pustaka yang digunakan (Harper, 1980) yang menyatakan bahwa uji Molisch memberikan reaksi warna jika direaksikan dengan protein yag mengandung gugus sakarida.

2.    Apakah yang dimaksud glikoprotein? Berikan contohnya!
Jawab :
Glikoprotein adalah suatu protein  yang mengandung rantai oligosakarida  yang mengikat glikan  dengan ikatan kovalen  pada rantai polipeptida  bagian samping. Struktur ini memainkan beberapa peran penting di antaranya dalam proses proteksi imunologis, pembekuan darah, pengenalan sel-sel, serta interaksi dengan bahan kimia lain. Dengan kata lain glikoprotein adalah Ini adalah biomolocule terdiri dari karbohidrat dan protein.. Contoh glikoprotein adalah Alpha-1-acid glycoprotein (AGP )atau orosomucoid (ORM). Yaitu suatu fase akut plasma alpha globulin glikoprotein danimodulasi oleh dua gen polimorphic.

3.    Apakah yang dimaksud denaturasi protein? Sebutkan hal-hal yang menyebabkan terjadinya denaturasi protein!
Jawab :
Denaturasi protein adalah berubahnya struktur protein dari struktur asalnya atau struktur alaminya.
Faktor-faktor yang dapat menyebabkan terjadinya denaturasi protein yaitu suhu tinggi,  perubahan pH yang ekstrim, pelarut organik, zat kimia tertentu (urea dan detergen), atau pengaruh mekanik (guncangan).

4.    Mengapa protein yang mengalami denaturasi menjadi kehilangan fungsi biologisnya?
Jawab :
Karena protein yang mengalami denaturasi akan mengalami perubahan struktur yang menyebabkan terdapat gangguan terhadap aktivitas selnya, sehingga protein tersebut kehilangan fungsi biologisnya

5.    Apakah urea CO(NH2)2 menunjukkan uji yang positif terhadap uji biuret?
Jawab :
Iya, urea memberikan hasil positif pada uji biuret karena urea mempunyai ikatan peptida di dalamnya.

6.    Apakah yang dimaksud struktur kuarterner protein?
Jawab :
Struktur kuartener protein adalah struktur di mana protein terdiri atas 2 rantai polipeptida atau lebih dan di satukan oleh gaya dispersi (ikatan hydrogen).

7.    Suatu sampel ditetesi larutan NaOH, kemudian larutan tembaga(II) sulfat yang encer menghasilkan warna ungu. Bila sampel dipanaskan dengan HNO3 pekat kemudian dibuat alkalis dengan NaOH terjadi warna jingga. Apakah yang dapat anda simpulkan dari uji di atas?
 Jawab :
Dari hasil uji di atas dapat di simpulkan bahwa sample mengandung ikatan peptida dan mengandung gugus fenol (cincin benzena).
  
 8.    Suatu sampel memberi hasil yang positif terhadap uji ninhidrin dan biuret tetapi negatif terhadap penambahan larutan NaOH dan Pb(NO3)2. Kesimpulan apakah yang dapat diperoleh dari fakta tersebut?
Jawab :
Sample mengandung protein dan ikatan peptide tetapi tidak mengandung belerang di dalamnya.

9.    Apakah yang dimaksud dengan enzim? Berikan contohnya!
Jawab :
Enzim adalah biomolekul  berupa protein  yang berfungsi sebagai katalis  (senyawa yang mempercepat proses reaksi tanpa habis bereaksi) dalam suatu reaksi kimia  organik . Contohnya adalah laktase , alkohol dehidrogenase  (mengatalisis penghilangan hidrogen dari alkohol), dan DNA polimerase .

10.  Bila 20 molekul glisin berpolimerisasi membentuk polipeptida. Berapakah massa molekul relatif polipeptida yang terbentuk? Ar H = 1, C = 12, N = 14, O = 16).
Jawab :
1440 g/mol

READ MORE - Tugas Kimia Organik

Sunday, March 17, 2013

METODE PEMERIKSAAN GLUKOSA DALAM DARAH

METODE PEMERIKSAAN GLUKOSA DALAM DARAH 

Terdapat dua metode utama yang digunakan untuk mengukur glukosa. Metode yang pertamaadalah metode kimiawi yang memanfaatkan sifat mereduksi dari glukosa, dengan bahan indikator yang akan berubah warna apabila tereduksi. Akan tetapi metode ini tidak spesifik karena senyawa-senyawa lain yang ada dalam darah juga dapat mereduksi (misal : urea, yang dapat meningkat cukup bermakna pada uremia) (Sacher, 2004). Contoh metode kimiawi yang masih digunakan untuk pemeriksaan glukosa saat ini adalah metode toluidin, karena murah, cara kerja sederhana, dan bahan mudah didapat (Departemen Kesehatan RI , 2005 ). Dengan metode kimiawi, kadar glukosa dapat lebih tinggi 5 sampai 15 mg/dl dibandingkan dengan kadar glukosa yang diperoleh dengan metode enzimatik (yang lebih spesifik untuk glukosa). Metode yang kedua adalah enzimatik yang umumnya menggunakan kerja enzim glukosa oksidase atau heksokinase,yang bereaksi pada glukosa, tetapi tidak pada gula lain (misal : fruktosa, galaktosa, dan lain-lain) dan pada bahan pereduksi. Contoh metode yang menggunakan kerja enzim adalah GOD – PAP dan cara strip (Sacher, 2004). 
Pemeriksaan kadar glukosa sekarang sudah diisyaratkan dengan cara enzimatik, tidak lagi dengan prinsip reduksi untuk menghindari ikut terukurnya zat-zat lain yang akan memberikan hasil tinggi palsu. Cara enzimatik dapat dilakukan dengan cara otomatis seperti dengan GOD- PAP dan cara Strip (Suryaatmadja, 2003). 

Pemeriksaan dengan metode GOD-PAP memiliki kelebihan, yaitu : presisi tinggi, akurasi tinggi, spesifik, relatif bebas dari gangguan (kadar hematokrit, vitamin C, lipid, volume sampel, dan suhu). Sedangkan kekurangannya adalah memiliki ketergantungan pada reagen, butuh sampel darah yang banyak, pemeliharaan alat dan reagen memerlukan tempat yang khusus dan membutuhkan biaya yang cukup mahal. Sedangkan pada cara strip memiliki kelebihan hasil pemeriksaan dapat segera diketahui, hanya butuh sampel sedikit, tidak membutuhkan reagen khusus, praktis dan mudah dipergunakan jadi dapat dilakukan oleh siapa saja tanpa butuh keahlian khusus. Kekurangannya adalah akurasinya belum diketahui, dan memiliki keterbatasan yang dipengaruhi oleh kadar hematokrit, interfensi zat lain (Vitamin C, lipid, bilirubin dan hemoglobin), suhu, volume sampel yang kurang, dan strip bukan untuk menegakkan diagnosa klinis melainkan hanya untuk pemantauan kadar glukosa (Suryaatmadja, 2003).
Glukosa Darah : 

Dalam ilmu kedokteran, gula darah adalah istilah yang mengacu kepada kadar glukosa di dalam darah . Kadar glukosa darah diatur dengan ketat di dalam tubuh. Glukosa yang dialirkan melalui darah adalah sumber utama energi untuk sel-sel tubuh. Umumnya, kadar glukosa darah berada pada kadar (70-110 mg/dl) (Price, 2005).

Metabolisme glukosa yang tidak normal dapat menyebabkan :
a. Hiperglikemia 
Bila kadar gula darah berada pada kadar tinggi (>110 mg/dl) disebut hiperglikemia (Price, 2005). 

b. Hipoglikemia
Bila kadar glukosa terlalu terendah (< 70 mg/dl), disebut hipoglikemia (Price, 2005).


Metode Pengukuran Kadar Glukosa
a. Metode kimia
Sebagian besar pengukuran dengan metode kimia yang didasarkan atas kemampuan reduksi sudah jarang dipakai karena spesifitas pemeriksaan kurang tinggi (Departemen Kesehatan RI, 2005 ).

Prinsip pemeriksaan, yaitu proses kondensasi glukosa dengan akromatik amin dan asam asetat glasial pada suasana panas, sehingga terbentuk senyawa berwarna hijau kemudian diukur secara fotometri (Departemen Kesehatan RI, 2005 ).

Beberapa kelemahan atau kekurangan dari metode kimia adalah memerlukan langkah pemeriksaan yang panjang dengan pemanasan, sehingga memungkinkan terjadinya kesalahan besar bila dibandingkan dengan metode enzimatik. Selain itu, reagen-reagen pada metode kimiawi ini bersifat korosif pada alat laboratorium. Dan gula selain glukosa dapat terukur kadarnya sehingga menyebabkan hasil tinggi palsu. Pada penderita gagal ginjal, kadar ureum tinggi akan terjadi hasil pengukuran kadar glukosa yang lebih tinggi. Demikian juga pada bayi yang baru lahir, akan tetapi penyebabnya kadar bilirubin yang tinggi. Peningkatan kadar glukosa pada bayi yang baru lahir karena terbentuk biliverdin yang berwarna hijau dan pada metode kimiawi ini hasil reaksi antara glukosa dan reagen adalah warna hijau (Departemen Kesehatan RI, 2005 ).


b. Metode enzimatik
Metode enzimatik pada pemeriksaan glukosa darah memberikan hasil dengan spesifitas yang tinggi, karena hanya glukosa yang akan terukur. Cara ini adalah cara yang digunakan untuk menentukan nilai batas. Ada 2 macam metode enzimatik yang digunakan yaitu glucose oxidase dan metode hexokinase (Departemen Kesehatan RI, 2005 ).

1) Metode glucose oxidase
Metode glucose oxidase merupakan metode yang paling banyak digunakan di laboratorium yang ada di Indonesia. Sekitar 85% dari peserta Program Nasional Pemantapan Mutu Eksternal bidang Kimia Klinik (PNPME-K) memeriksa glukosa serum kontrol dengan metode ini (Departemen Kesehatan RI, 2005).

Prinsip pemeriksaan pada metode ini adalah enzim glucose oxidase mengkatalisis reaksi oksidasi glukosa menjadi asam glukonat dan hidrogen peroksida. Hidrogen peroksida yang terbentuk bereaksi dengan phenol dan 4-amino phenazone dengan bantuan enzim peroksidase menghasilkan quinoneimine yang berwarna merah muda dan dapat diukur dengan fotometer pada panjang gelombang 546 nm. Intensitas warna yang terbentuk setara dengan kadar glukosa darah yang terdapat dalam sampel (Riyani, 2009).

Digunakannya enzim glucose oxidase pada reaksi pertama menyebabkan sifat reaksi pertama spesifik untuk glukosa (Departemen Kesehatan RI, 2005).

2) Metode hexokinase
Metode hexokinase merupakan metode pengukuran kadar glukosa darah yang dianjurkan oleh WHO dan IFCC. Baru sekitar 10% laboratorium yang ikut PNPME-K menggunakan metode ini untuk pemeriksaan glukosa darah (Departemen Kesehatan RI, 2005).

Prinsip pemeriksaan pada metode ini adalah hexokinase akan mengkatalis reaksi fosforilasi glukosa dengan ATP membentuk glukosa-6-fosfat dan ADP. Enzim kedua yaitu glukosa-6-fosfat dehidrogenase akan mengkatalisis oksidasi glukosa-6-fosfat dengan nicotinamide adenine dinocleotide phosphate (NADP+) (Departemen Kesehatan RI, 2005).

Pada metode ini digunakan dua macam enzim yang baik karena kedua enzim ini spesifik. Akan tetapi, metode ini membutuhkan biaya yang relatif mahal (Departemen Kesehatan RI, 2005).

c. Cara Strip 
Merupakan alat pemeriksaan laboratorium sederhana yang dirancang hanya untuk penggunaan sampel darah kapiler, bukan untuk sampel serum atau plasma. Strip katalisator spesifik untuk pengukuran glukosa dalam darah kapiler (Suryaatmadja, 2003).

Prinsip pemeriksaan pada metode ini adalah strip test diletakkan pada alat, ketika darah diteteskan pada zona reaksi tes strip, katalisator glukosa akan mereduksi glukosa dalam darah. Intensitas dari elektron yang terbentuk dalam alat strip setara dengan konsentrasiglukosa dalam darah.

Cara strip memiliki kelebihan hasil pemeriksaan dapat segera diketahui, hanya butuh sampel sedikit, tidak membutuhkan reagen khusus, praktis, dan mudah dipergunakan, serta dapat dilakukan oleh siapa saja tanpa butuh keahlian khusus.

Kekurangannya adalah akurasinya belum diketahui, dan memiliki keterbatasan yang dipengaruhi oleh kadar hematokrit, interfensi zat lain (Vitamin C, lipid, dan hemoglobin), suhu, volume sampel yang kurang, dan strip bukan untuk menegakkan diagnosa klinis melainkan hanya untuk pemantauan kadar glukosa (Suryaatmadja, 2003).


Dalam pemeriksaan klinik, penentuan kadar gula darah dapat dilakukan berdasarkan :
1.Senyawa-senyawa mereduksi ;
 Gula reduksi adalah gula yang mempunyai kemampuan untuk mereduksi. Hal ini dikarenakan adanya gugus aldehid atau keton bebas. Senyawa-senyawa yang mengoksidasi atau bersifat reduktor adalah logam-logam oksidator seperti Cu (II). Contoh gula yang termasuk gula reduksi adalah glukosa, manosa, fruktosa, laktosa, maltosa, dan lain-lain. Prisip penentuannya didasari pada kemampuan glukosa untuk mereduksi ion anorganik seperti Cu2+ atau Fe(CN)63-. Penentuan glukosa secara reaksi reduksi kurang spesifik dibanding cara enzimatik, terutama bila dalam darah terdapat bahan yang dapat mereduksi misalnya kreatinin, asam urat dan gula-gula lain selain glukosa (manosa, galaktosa dan laktosa) yang akan memberikan hasil pemeriksaan yang lebih tinggi daripada kadar glukosa yang sebenarnya.

2. Karbohidrat Total ; 
Pengukuran kadar karbohidrat dalam serum atau plasma digunakan untuk diagnosa dan monitoring treatment diabetes mellitus, serta untuk mendeteksi hipoglikemia, fungsi pancreas, arcinoma sel dan kemungkinan terdapat berbagai penyakit lainnya yang disebabkan oleh kelainan metabolisme karbohidrat. Prinsipnya yaitu Glukosa dioksidasi menjadi asam glukonat dan H2O2 dengan enzim GOD-PAP. Kemudian, H2O2 direaksikan dengan peroksidase dan O-dianisidin menghasilkan senyawa berwarna yang dapat dibaca pada spektrofotometer λ 500 nm.

3.Enzimatik Gula Darah ; Glukosa dapat ditentukan kadarnya secara enzimatik, misalnya dengan penambahan enzim glukosa oksidase (GOD). Prinsip kerja metode ini adalah Metode enzimatik dibantu enzim-enzim contoh katalase (reaksi Hantz) dan peroksidase (reaksi trinder). Pereagen yang digunakan menggunakan pereagen GOD-PAP. Absorbansi λ dan Warna absorbansi metode enzimatik intensitasnya pada λ 500 nm dengan warna merah (dari H2O2 yang terbentuk + peroksidase). Dengan prinsip dasar glukosa dioksidasi oleh oksigen dengan katalis enzim glukosa oxidase (GOD) akan membentuk asam glukonik dan hidrogen peroksida (H2O2). Dengan adanya oksigen atau udara, glukosa dioksidasi oleh enzim menjadi asam glukuronat disertai pembentukan H2O2. Enzim peroksidase (POD) mengakibatkan H2O2 membebaskan O2 yang mengoksidasi akseptor kromogen yang sesuai serta memberikan warna yang sesuai pula. Kadar glukosa darah ditentukan berdasarkan intensitas warna yang terjadi, diukur secara spektrofotometri. Hidrogen peroksida akan bereaksi dengan 4-aminoantipyrin dan fenol dengan katalis peroksidase (POD) membentuk quinoneimine dan air. Quinoneimine ini merupakan indikator yang menunjukan kadar glukosa dalam darah.

Glukosa + O2 asam glukonat + H2O2 → 2 H2O2 + 4 Aminoantipirin + Fenol Quinonemine + 4 H2O
Pada reaksi ini terbentuk H2O2 yang dengan peroksidase (POD) akan bereaksi dengan 2,4 diklorofenol dan 4 amino antipirin. Oksidasi ini menimbulkan zat warna merah antipirin quinonemine yang intensitasnya sebanding dengan kadar glukose yang diukur secara fotometrik. Kelebihan dari metode enzimatik ialah spesifik, presisi tinggi, relatif bebas dari gangguan dan cocok diadaptasikan untuk otomatisasi. Sedangkan kekurangannya antara lain adanya efek steroid namun sangat minim karena kadar yang sangat kecil.


Macam-macam Serum dalam Tes Glukosa
a. Glukosa sewaktu
Glukosa sewaktu adalah serum yang diambil kapan saja, tanpa mempertimbangkan makan terakhir.

b. Glukosa puasa
Glukosa puasa adalah serum yang diambil ketika tidak ada asupan kalori selama paling sedikit 8 jam (puasa).

c. Glukosa 2 jam setelah makan
Glukosa 2 jam setelah makan adalah pemeriksaan glukosa yang dilakukan setelah makan (Sacher, 2004).

d. Oral glukosa
Oral glukosa toleransi test dilakukan dengan cara pemberian larutan glukosa pada pasien yang dibuat 75 gram glukosa yang dilarutkan dalam 150 ml air atau aquades.

Sebelum pemberian larutan glukosa pasien puasa 8- 10 jam, kemudian diambil darahnya. Pasien kemudian diberi larutan glukosa sebanyak 75gram untuk orang dewasa ( atau 1,75 gram/KgBB untuk anak) dilarutkan dalam 250 mL air, dan harus diminum habis dalam waktu 5 menit. Tepat 1 jam serta 2 jam setelah pemberian larutan glukosa darah diambil dan diperiksa hasilnya, dapat pula hanya diwaktu 2 jam setelah pemberian larutan glukosa darah diambil dan diperiksa (Suryaatmadja, 2003).


sumber:
http://judulktipoltekkestanjungkarang.blogspot.com/2012/08/perbedaan-hasil-pemeriksaan-kadar.html
http://ra-kagome.blogspot.com/2009/11/pemeriksaan-glukosa-darah.html 
READ MORE - METODE PEMERIKSAAN GLUKOSA DALAM DARAH

KARBOHIDRAT

KARBOHIDRAT


KARBOHIDRAT yaitu senyawa organik terdiri dari unsur karbon, hidrogen, dan oksigen. Terdiri atas unsur C, H, O dengan perbandingan 1 atom C, 2 atom H, 1 atom O. karbohidrat banyak terdapat pada tumbuhan dan binatang yang berperan struktural & metabolik. sedangkan pada tumbuhan untuk sintesis CO2 + H2O yang akan menghasilkan amilum / selulosa, melalui proses fotosintesis, sedangkan Binatang tidak dapat menghasilkan karbohidrat sehingga tergantung tumbuhan. sehingga tergantung dari tumbuhan. karbohidrat merupakan sumber energi dan cadangan energi, yang melalui proses metabolisme.

Banyak sekali makanan yang kita makan sehari hari adalah suber karbohidrat seperti : nasi/ beras,singkung, umbi-umbian, gandum, sagu, jagung, kentang, dan beberapa buah-buahan lainnya, dll. Pada tanamah karbohidrat disimpan sebagai tepung atau selulosa. Pada hewan karbohidrat disimpan dalam sebaga glikogen.

Rumus umum karbohidrat yaitu Cn(H2O)m, sedangkan yang paling banyak kita kenal yaitu glukosa : C6H12O6, sukrosa : C12H22O11, sellulosa : (C6H10O5)n

Pada awalnya nama karbohidrat digunakan untuk menunjukan gula dan polimernya. Sekarang nama karbohidrat lebih tepat digunakan untuk menggambarkan senyawa polihidroksi aldehid atau keton atau senyawa yang dihasilkan dari hidrolisisnya.




MONOSAKARIDA
Monosakarida merupakan sakarida sederhana yang tidak dapat dihidrolisis menjadi satuan terkecil walaupun dalam suasana yang lunak sekalipun. Monosakarida paling sederhana adalah gliseraldehid atau aldotriosa dan isomerinya adalah dihidroksiaseton atau ketotriosa . Kedua senyawa tersebut merupakan suatu triosa karena mengandung tiga atom karbon. Jadi suatu monosakarida, tidak hanya dapat dibedakan berdasarkan gugus-gugus fungsionalnya melainkan juga dari jumlah atom karbonnya.

Monosakarida yang paling banyak ditemukan dalam tubuh organisme adalah monosakarida yang dibangun dengan 6 (enam) atom C yang dikenal sebagai Glukosa. Pada molekul ini terdapat lima gugus hidroksil dan satu gugus aldehid yang terikat pada atom karbon. Glukosa memiliki dua isomer yaitu manosa dan Galaktosa, perbedaan antara Glukosa dengan Manosa terletak pada gugus hidroksi pada atom C nomor 2. Demikian pula halnya perbedaan antara Glukosa dan Galaktosa terletak pada gugus hidroksinya, gugus OH disebelah kanan untuk galaktosa sedangkan glukosa terletak disebelah kiri,

Glukosa dengan rumus molekul C6H12O6, adalah monosakarida yang mengandung enam atom karbon. Glukosa merupakan polihidroksi aldehida (memiliki gugus CHO). Lima karbon dan satu oksigennya membentuk siklik yang disebut “cincin piranosa”, bentuk siklik ini paling stabil untuk aldosa beratom karbon enam.

Dalam cincin piranosa, atom karbon mengikat gugus samping hidroksil dan hidrogen kecuali untuk atom C no.5, yang terikat pada gugus CH2OH sebagai atom karbon nomor 6. Struktur cincin ini berada dalam kesetimbangan pada pH 7, struktur D-Glukosa dalam bentuk cincin piranosa ditunjukan pada Gambar 14.8. Selain memiliki isomer, Glukosa juga memiliki enansiomer yaitu isomer cermin terhadap dirinya yaitu D-glukosa dan L-glukosa. Namun kenyataannya yang ditemukan pada organisme, hanya yang dalam bentuk D-isomer. Dalam bentuk rantai lurus kita dapat dengan mudah membedakan Bentuk D atau L konformasi isomer pada karbon nomor 5 atau pada atom C asimetris. Notasi D berasal dari kata Dextro berarti kanan, dan notasi L berarti levo atau kiri, sebagai penanda digunakan gugus hidroksilnya.

Sedangkan pada cincin piranosa juga memiliki dua bentuk yang khas, yaitu posisi dari gugus hidroksil pada atom karbon pertama. Jika gugus hidroksil berposisi di bawah hidrogennya, maka disebut dengan bentuk α (alfa). Demikianpula sebaliknya jika gugus hidroksilnya berposisi di atas hidrogennya, disebut dengan bentuk β (beta), perhatikan Gambar 14.9 dan Gambar 14.10. Glukosa di dalam air akan membentuk keseimbangan dalam dua bentuk, yaitu bentuk α -D–Glukosa dan β -D–Glukosa, dengan komposisi 36 : 64. Proses perubahan dari α -D–Glukosa ke β -D–Glukosa atau sebaliknya disebut dengan disebut mutarotasi.


Klasifikasi monosakarida

Monosakarida diklasifikasikan berdasarkan tiga karakteristik yang berbeda:

· penempatan gugus karbonil,

· jumlah atom karbon yang dikandungnya, dan

· wenangan kiral nya.


Jika gugus karbonil merupakan aldehida, monosakarida adalah suatu aldosa, jika gugus karbonil adalah keton, monosakarida adalah suatu ketose. Monosakarida dengan tiga atom karbon disebut triosa, mereka dengan empat disebut tetroses, lima disebut pentosa, heksosa enam adalah, dan sebagainya.

Kedua sistem klasifikasi tersebut sering digabungkan. Sebagai contoh, glukosa adalah aldohexose (suatu aldehida enam karbon), ribosa adalah aldopentose (suatu aldehida lima-karbon), dan fruktosa adalah ketohexose (keton enam karbon).

Setiap atom karbon bantalan gugus hidroksil (-OH), dengan pengecualian pada karbon pertama dan terakhir, yang asimetris, membuat mereka stereocenters dengan dua konfigurasi yang mungkin masing-masing (R atau S). Karena asimetri ini, sejumlah isomer mungkin ada untuk semua formula monosakarida yang diberikan. Para aldohexose D-glukosa, misalnya, memiliki rumus (C · H 2 O) 6, yang semua kecuali dua atom karbon yang enam stereogenic, membuat D-glukosa salah satu dari 2 4 = 16 stereoisomer mungkin. Dalam kasus gliseraldehida, aldotriose, ada satu sepasang stereoisomer yang mungkin, yang enantiomer dan epimers. 1,3-dihidroksiaseton, yang ketose sesuai dengan gliseraldehida aldosa, adalah molekul simetris tanpa stereocenters). Penugasan D atau L adalah dibuat sesuai dengan orientasi dari karbon asimetrik terjauh dari gugus karbonil: dalam proyeksi Fischer standar jika gugus hidroksil yang di sebelah kanan adalah molekul gula D, selain itu adalah gula L. "D-" dan "L-" prefiks tidak harus bingung dengan "d-" atau "l-", yang menunjukkan arah bahwa gula berputar cahaya terpolarisasi bidang. Ini penggunaan "d-" dan "l-" tidak lagi diikuti dalam kimia karbohidrat.

Ring-isomer rantai lurus

Kelompok aldehid atau keton dari monosakarida rantai lurus akan bereaksi reversibel dengan gugus hidroksil pada atom karbon yang berbeda untuk membentuk, hemiacetal atau hemiketal membentuk cincin heterosiklik dengan jembatan oksigen antara dua atom karbon. Cincin dengan lima dan enam atom disebut bentuk furanose dan pyranose, masing-masing, dan ada dalam kesetimbangan dengan bentuk rantai lurus.

Selama konversi dari rantai lurus bentuk ke bentuk siklik, atom karbon yang mengandung oksigen karbonil, yang disebut karbon anomeric, menjadi pusat stereogenic dengan dua konfigurasi yang mungkin: Atom oksigen mungkin mengambil posisi di atas atau di bawah bidang cincin . Pasangan yang mungkin dihasilkan dari stereoisomer yang disebut anomers. Dalam''''anomer α,-OH substituen pada karbon anomeric terletak di sisi berlawanan (trans) dari cincin dari sisi cabang OH CH 2.Bentuk alternatif, di mana CH 2 OH dan substituen hidroksil anomeric berada pada sisi yang sama (cis) dari pesawat dari cincin, disebut β''''anomer. Anda dapat mengingat bahwa anomer β adalah cis oleh mnemonic itu, "Itu selalu lebih baik untuk sampai βe". Karena cincin dan rantai lurus bentuk interconvert mudah, baik anomers ada dalam kesetimbangan. Ia memiliki banyak kegunaan seperti peran penting dalam industri kertas dan tekstil, dan digunakan sebagai bahan baku untuk produksi dari rayon (viscose melalui proses), selulosa asetat, seluloid, dan nitroselulosa. Kitin memiliki struktur yang serupa, tetapi mengandung nitrogen cabang samping, meningkatkan kekuatannya. Hal ini ditemukan di arthropoda exoskeletons dan dalam dinding sel dari beberapa jamur. Ia juga memiliki kegunaan ganda, termasuk benang bedah.


DISAKARIDA
Disakarida yang paling banyak terdapat adalah sukrosa atau gula tebu yang terdiri dari unit glukosa dan fruktosa yang berkaitan secara spesifik yang disebut ikatan glikosida.
Disakarida seperti maltosa, laktosa, dan sukrosa terdiri dari dua unit monosakarida yang terbentuk melalui suatu ikatan yang disebut ikatan glikosida.
Ikatan glikosida ini mudah dihidrolisis oleh asam tetapi tidak oleh basa. Oleh karena itu disakarida dapat di hidrolisis dengan mudah dengan memanaskannya dalam larutan asam encer.
Bentuk ikatan glikosida lainnya terbentuk dengan atom N (ikatan N-glikosil) yang ditemukan pada seluruh nukleotida.
Matlosa, unit D-glukosa dengan ikatan glikosida antara atom C-1(karbon anomer) dari suatu glukosa dengan atom C-4 pada unit glukosa yang lainnya dengan konfigurasi ikatan glikosidanya a.
Laktosa, disusun oleh D-galaktosa dan D-glukosa. Karbon anomerunit glukosa dapat dioksidasi sehingga laktosa dapat dioksidasi sehingga laktosa tergolong kedalam disakarida yang tereduksi. Jenis ikatan glikosida pada laktosa b
Sukrosa, disusun oleh unit glukosa dan fruktosa dan terbentuknya pada tanaman dan tidak pada hewan. Berada dengan maltosa dan laktosa, sukrosa tidak memiliki atom karbon anomer yang bebas. Karena anomer untuk kedua unit monosakarida terlibat dalam ikatan glikosida.
Trehalosa, dua unit glukosa dengan susunan ikatan antara atom karbon anommer (C-1) dengan karbon anomer (C-1) dari unit lainnya, sehingga terhalosa juga merupakan gula yang tidak tereduksi (noreducing sugar). Trehalosa merupakan komponen utama dalam cairan sirkulasi serangga dan berfungsi sebagai cadangan energi.
http://rtahirah.blogspot.com/2012/12/karbohidrat-i.html


Nukleotida terdiri dari :
Molekul gula
Basa
Posfat
Disakarida : senyawanya terbentuk dari 2 molekul monosakarida yg sejenis atau tidak. Disakarida dapat dihidrolisis oleh larutan asam dalam air sehingga terurai menjadi 2 molekul monosakarida.
hidrolisis : terdiri dari 2 monosakatida
sukrosa : glukosa + fruktosa (C 1-2)
maltosa : 2 glukosa (C 1-4)
trehalosa ; 2 glukosa (C1-1)
Laktosa ; glukosa + galaktosa (C1-4)


Oligosakarida
Oligosakarida adalah karbohidrat berantai pendek yang dibangun oleh beberapa unit monosakarida.
Oligosakarida :senyawa yang terdiri dari gabungan molekul2 monosakarida yang banyak gabungan dari 3 – 6 monosakarida
dihidrolisis : gabungan dari 3 – 6 monosakarida misalnya maltotriosa
Ada tidaknya sifat pereduksi dari suatu molekul gula ditentukan ada tidaknya oleh gugus hidroksil (OH) bebas yang reaktif. Gugus yang reaktif oada gugus glukosa (aldosa) biasanya terletak pada atom C no.1 (anomerik) sedangkan pada fruktosa (ketosa) pada gugus hidroksil reaktifnya terletak pada atom C no.2
Sukrosa tidak mempunyai guguss OH bebas yang reaktif karena keduanya sudah saling terikat, sedangkan laktosa mempunyai gugus OH bebas pada atom C no.1 pada gugus glukosanya. Karena itu laktosa bersifat pereduksi sedangkan sukrosa bersifat non reduksi.


Polisakarida
Polisakarida : senyawa yang terdiri dari gabungan molekul- molekul monosakarida yang banyak jumlahnya, senyawa ini bisa dihidrolisis menjadi banyak molekul monosakarida. Polisakarida merupakan jenis karbohidrat yang terdiri dari lebih 6 monosakarida dengan rantai lurus/cabang.
Macam-Macam Polisakarida
a. Amilum
rantai a-glikosidik (glukosa)n : glukosan/glukan Amilosa (15 – 20%) : helix, tidak bercabang
Amilopektin (80 – 85%) : bercabang
Terdiri dari 24 – 30 residu glukosa,
Simpanan karbohidrat pada tumbuhan,
Tes Iod : biru
ikatan C1-4 : lurus
ikatan C1-6 : titik percabangan
b. Glikogen
Simpanan polisakarida binatang
Glukosan (rantai a) - Rantai cabang banyak
Iod tes : merah
c. Inulin
pati pada akar/umbi tumbuhan tertentu,
Fruktosan
Larut air hangat
Dapat menentukan kecepatan filtrasi glomeruli.
Tes Iod negatif
d. Dekstrin dari hidrolisis pati
e. Selulosa (serat tumbuhan)
Konstituen utama framework tumbuhan
tidak larut air - terdiri dari unit b
Tidak dapat dicerna mamalia (enzim untuk memecah ikatan beta tidak ada) - Usus ruminantia, herbivora ada mikroorganisme dapat memecah ikatan beta : selulosa dapat sebagai sumber karbohidrat.
f. Khitin
polisakarida invertebrata
g. Glikosaminoglikan
karbohidrat kompleks
merupakan (+asam uronat, amina)
penyusun jaringan misalnya tulang, elastin, kolagen
Contoh : asam hialuronat, chondroitin sulfat
h. Glikoprotein
Terdapat di cairan tubuh dan jaringan
terdapat di membran sel
merupakan Protein + karbohidrat


Analisa kualiatif karbohidrat.

1. Uji Molisch
- Prinsip reaksi ini adalah dehidrasi senyawa karbohidrat oleh asam sulfat pekat.
- Dehidrasi heksosa menghasilkan senyawa hidroksi metil furfural, sedangkan dehidrasi pentosa menghasilkan senyawa fulfural.
- Uji positif jika timbul cincin merah ungu yang merupakan kondensasi antara furfural atau hidroksimetil furfural dengan alpha-naftol dalam pereaksi molish.

2. Uji Seliwanoff
- merupakan uji spesifik untuk karbohidrat yang mengandung gugus keton atau disebut juga ketosa
- Jika dipanaskan karbohidrat yang mengandung gugus keton akan menghasikan warna merah pada larutannya.

3. Uji Benedict
- merupakan uji umum untuk karbohidrat yang memiliki gugus aldehid atau keton bebas
- Uji benedict berdasarkan reduksi Cu2+ menjadi Cu+ oleh gugus aldehid atau keton bebas dalam suasana alkalis
- biasanya ditambahkan zat pengompleks seperti sitrat atau tatrat untuk mencegah terjadinya pengendapan CuCO3
- uji positif ditandai dengan terbentuknya larutan hijau, merah, orange atau merah bata serta adanya endapan.

4. Uji Barfoed
- Digunakan untuk menunjukkan adanya monosakarida dalam sampel
- Uji positif ditunjukkan dengan terbentuknya endapan merah orange

5. Uji Iodin
- Digunakan untuk menunjukkan adanya polisakarida
- Amilum dengan iodine dapat membentuk kompleks biru
- Amilopektin dengan iodin akan memberi warna merah ungu
- sedangkan dengan glikogen dan dekstrin akan membentuk warna merah coklat

6. Uji Fehling
- Digunakan untuk menunjukkan adanya karbohidrat pereduksi (monosakarida, laktosa, maltosa, dll)
- Uji positif ditandai dengan warna merah bata



Sumber :
http://cuthasnani.blogspot.com/2012/05/monosakarida.html
http://rtahirah.blogspot.com/2012/12/karbohidrat-i.html
http://biologi.blogsome.com/2011/02/07/karbohidrat-dan-uji-karbohidrat/
READ MORE - KARBOHIDRAT